
Network Monitoring as a 
Streaming Analytics Problem

Arpit Gupta
Princeton University

Rüdiger Birkner, Marco Canini, Nick Feamster, 

Chris Mac-Stoker, Walter Willinger



2

Conventional Network Monitoring

101
11
0
10
01
1

101
11
0
10
01
1

101
11
0
10
01
1

Monitoring 
Sensor

Network Monitor

Compute Store

Monitoring
Queries

NetFlow, 
sFlow, SNMP, etc.



3

Big (“Internet”) Data

101
11
0
10
01
1

101
11
0
10
01
1

101
11
0
10
01
1

Monitoring 
Sensor

Not suited for large networks & 
real-time monitoring applications

Network MonitorMonitoring
Queries

Compute Store

Source: DE-CIX statistics



4

Network Monitoring as
Streaming Analytics Problem

101
11
0
10
01
1

101
11
0
10
01
1

101
11
0
10
01
1

Monitoring 
Sensor

Stream ProcessorRun-timeMonitoring
Queries

Is using state-of-art stream processor good 
enough solution?



Is it Good Enough?

• Use Case:
– Reflection Attack Monitoring Query

Detect hosts for which # of unique source IPs 
sending UDP response messages exceeds threshold

5



Is it Good Enough?

• Use Case:
– Reflection Attack Monitoring Query

Detect hosts for which # of unique source IPs 
sending UDP response messages exceeds threshold

6

victimIPs =
pktStream.window(W).transform { wndPkts =>

wndPkts.filter(p => p.proto == 17)
.map(p => (p.dIP, p.sIP)).distinct
.map((dIP, sIP) => (dIP, 1))
.reduceByKey(sum)
.filter((dIP, count) => count > T)
.map((dIP, count) => dIP)

}



Is it Good Enough?

• Use Case:
– Reflection Attack Monitoring Query

Detect hosts for which # of unique source IPs 
sending UDP response messages exceeds threshold

– Use two hour IPFIX data trace from a large IXP

• Prohibitively Costly:
– Packet Processing Cost: requires processing 220 M

packets per second
– High Count Bucket Cost: requires maintaining 1.16 B

count buckets
7

How can we bring down these costs?



Idea 1: Iterative Query Refinement

• Observation: 
Small fraction of traffic satisfies monitoring queries, e.g. 
only 1 % of the traffic satisfies reflection attack query

• How it works:
– Augment operator’s query to observe at coarser level
– Iteratively zoom-in to filter out uninteresting traffic

• Trade-off:
– Reduces count bucket cost
– Introduces additional detection delay cost

8



9

Iterative Query Refinement

Stream ProcessorRun-timeMonitoring
Queries

Iterative Refinement

Stream Processor’s output used by 
Run-time to refine queries



Iterative Refinement in Action

10

Q(dIP/8)

root - all traffic

t+W

t



Iterative Refinement in Action

11

Q(dIP/8)

Q(dIP/16)

root - all traffic

t+W

t+2W

t



Iterative Refinement in Action

12

Q(dIP/8)

Q(dIP/16)

Q(dIP/32)

root - all traffic

t+W

t+2W

t+3W

t



Iterative Refinement in Action

13

Q(dIP/8)

Q(dIP/16)

Q(dIP/32)

root - all traffic

t+W

t+2W

t+3W

t

Detects hosts that satisfy the query in 3 
window intervals



Idea 2: Query Partitioning

• Observation:
Data Plane can process packets at line rate

• How it works:
Delegate query processing operations that can be 
executed in the data plane, e.g. filtering, sampling

• Trade-off:
– Reduces both the pkt processing & count bucket cost
– Introduces additional state in the data plane

14



15

Query Partitioning

Programmable
Data Plane

Data Plane 
Configurations

Stream ProcessorRun-timeMonitoring
Queries

Iterative Refinement

Runtime Partitions Monitoring Queries



Performance Improvements

Reflection Attack Monitoring (dIP/16 à dIP/32)

Rate (pps) # Buckets

Stream Processor Only 220 M 1.16 B

Iterative Refinement Only 220 M 12 K

Iterative Refinement + 
Query Partitioning 5.4K 12 K

16

Trades pkt processing & count bucket cost 
for additional detection delay



Network Monitoring Applications

• Reflection Attack Monitoring (Security)
Detect hosts for which # of unique sIPs sending UDP 
response messages exceeds thresh

• Distributed Port Scan Detection (Security)
– Detect hosts for which # of unique dIP exceeds thresh
– Detect hosts for which # of unique dPorts exceeds 

thresh

• Distributed Jitter Monitoring (QoE)
Detect user groups for which RTT exceeds thresh

17



Future Directions

• Query Language
How to dynamically map high-level abstractions to 
packet tuples?

• Iterative Refinement
How to automate generation of optimal refinement plans 
for a query?

• Query Partitioning
How to execute more complex streaming operations like 
map, reduce, join etc. in the data plane?

18



Summary

• Big (“Internet”) Data motivates modulating 
network monitoring as a streaming analytics
problem
Using state-of-art stream processors is not enough

• Stream processors + programmable data planes 
raise new opportunities

• Iterative Query Refinement and Partitioning can 
reduce pkt processing and count buckets by 4 
and 5 orders of magnitude, respectively 19



Backup Slides

20



Feast or Famine Dichotomy

• Feast: 
• Capture all traffic, e.g. pcap
• Detect all interesting network events 
• Higher cost and slower detection 

• Famine: 
– Capture subset of traffic, e.g. Netflow, SNMP etc.
– Not useful for many monitoring applications
– Lower cost and faster detection

21

Current Trend:
“Capture all the packets, all the time”



Packet processed

Refinement Plan Search

22

D
et

ec
tio

n 
de

la
y

Count buckets

xi,j
1 if refinement
from level i to j

r
sampling rate

Learn {x} and r that minimize a linear 
combination of cost metrics



Run-time

23

Refinement

Partitioning (offload to 
data plane)victims16(t+1) =

pktStream.window(W).transform { wndPkts =>
wndPkts
.filter(p => p.proto == 17)
.filter(dIP in victims8(t))
.sample(r)
.map((dIP) => (dIP/16))
.map(p => (p.dIP, p.sIP)).distinct
.map((dIP, sIP) => (dIP, 1))
.reduceByKey(sum)
.filter((dIP, count) => count > T)
.map((dIP, count) => dIP)

}



SONATA Architecture

24

Programmable Data Pane

Packets
Stream Processor

Application
Interface

Data Plane 
Configurations

Q1

Query Output

Tuples

Q2 QN

Data Processing 
Pipeline

Training Data
Run-time

Refinement

Partition


