Network Monitoring as a
Streaming Analytics Problem

Princeton University

Rudiger Birkner, Marco Canini, Nick Feamster,
Chris Mac-Stoker, Walter Willinger

Conventional Network Monitoring

Compute Store

[l
M(glr]gﬁggg - KJJ«---@ Network Monitor

............................... l\.\.
,f’ | \\\
,,,,, :
- 1
1
o i NetFlow,
Monitoring | sFlow, SNMP, etc. |
Sensor :
i

Big (“Internet”) Data

2-day graph Source: DE-CIX statistics

Monitoring *E__ =
Queries <=

L 0.0- &
. ’ 12:00 18:00 00: 00 06: 00 12: 00 18: 00 00: 00 06: 00
O average traffic

M
’ g ic in bits per second

Current NaN G

’ Averaged 3331.2 G
Graph Peak 5242.7 G
DE-CIX All-Time Peak 5502.22

I Created at 2016-03-26 07:50 UTC
Copyright 2016 DE -CIX Management GmbH
Monitoring | -)

0 > Sensor i -~ >

///‘/nﬁi \>/401110
Not suited for large networks &
real-time monitoring applications

Network Monitoring as
Streaming Analytics Problem

Monltorlng e e L ELLEE pQr

== Run-time |[------ -{Stream Processor
Queries :

- N ’f"

oFlink
[N
N\
2 e ensor ;;!z\> 01
11 \u
ot % ////i o et

Is using state-of-art stream processor good
enough solution?

Is it Good Enough?

« Use Case:
— Reflection Attack Monitoring Query

Detect hosts for which # of unique source IPs
sending UDP response messages exceeds threshold

Is it Good Enough?

« Use Case:
— Reflection Attack Monitoring Query

Detect hosts for which # of unique source IPs
sending UDP response messages exceeds threshold
victimIPs =
pktStream.window(W).transform { wndPkts =>
wndPkts.filter(p => p.proto == 17)
.map(p => (p.dIP, p.sIP)).distinct
.map((dIP, sIP) => (dIP, 1))
.reduceByKey(sum)
.filter((dIP, count) => count > T)
.map((dIP, count) => dIP)

Is it Good Enough?

« Use Case:
— Reflection Attack Monitoring Query

Detect hosts for which # of unique source IPs
sending UDP response messages exceeds threshold

— Use two hour IPFIX data trace from a large IXP

* Prohibitively Costly:

— Packet Processing Cost: requires processing 220 M
packets per second

How can we bring down these costs?

Idea 1: Iterative Query Refinement

 Observation:

Small fraction of traffic satisfies monitoring queries, e.g.
only 1 % of the traffic satisfies reflection attack query

* How it works:
— Augment operator’s query to observe at coarser level
— lteratively zoom-in to filter out uninteresting traffic

 Trade-off:

— Reduces count bucket cost
— Introduces additional detection delay cost

Iterative Query Refinement

Iterative Refinement

e el e e e |

. . , * .. jrrre s ._
Monitoring -+ Run-time |------ -+ Stream Processor| :

Queries *
A AN

1 &
C N)

o ——

Stream Processor’s output used by
Run-time to refine queries

lterative Refinement in Action

root - all traffic

Q(dIP/8) iy) O)---- Y

Cmmm—————

4=

-
=

10

lterative Refinement in Action

root - all traffic

Q(dIP/8)

€

Q(dIP/16)

4=

-
=

ﬁ
+
N
=

11

lterative Refinement in Action

root - all traffic M

|

|

|

|

|

z - :

Q(dIP/8) O O O @) i

|

Qudip/1e) 1O (O !

|

Q(dIP/32) OO OO
L ~ v

4=

t+W

12

lterative Refinement in Action

4=

root - all traffic ®

Q(dIP/8) O O OO

QdiP/16) 1)y (OO 1 tr2w

-
=

Detects hosts that satisfy the quer-y in 3
window intervals

13

Idea 2: Query Partitioning

* Observation:
Data Plane can process packets at line rate

 How it works:

Delegate query processing operations that can be
executed in the data plane, e.q. filtering, sampling

 Trade-off:

— Reduces both the pkt processing & count bucket cost
— Introduces additional state in the data plane

14

Query Partitioning

lterative Refinement

e el e e e |

[Frorreernse e Jrreeesennn e .

Monlto_rlng N Run-time |------ -+ Stream Processor
Queries e

’f
-
’f
-

Data Plane®
Configurations &

Programmable
Data Plane

Runtime Partitions Monitoring Queries

Performance Improvements

Reflection Attack Monitoring (dIP/16 - dIP/32)

Rate (pps) | # Buckets

Stream Processor Only 220 M 1.16 B

lterative Refinement Only 220 M 12 K

lterative Refinement +

Query Partitioning 5-4K 12K

Trades pkt processing & count bucket cost

for additional detection delay

16

Network Monitoring Applications

» Reflection Attack Monitoring (Security)

Detect hosts for which # of unique sIPs sending UDP
response messages exceeds thresh

 Distributed Port Scan Detection (Security)
— Detect hosts for which # of unique dIP exceeds thresh

— Detect hosts for which # of unique dPorts exceeds
thresh

 Distributed Jitter Monitoring (QoE)
Detect user groups for which RTT exceeds thresh

17

Future Directions

* Query Language
How to dynamically map high-level abstractions to
packet tuples?

* lterative Refinement

How to automate generation of optimal refinement plans
for a query?

* Query Partitioning

How to execute more complex streaming operations like
map, reduce, join etc. in the data plane?

18

Summary

* Big (“Internet”) Data motivates modulating
network monitoring as a streaming analytics
problem

Using state-of-art stream processors is not enough

« Stream processors + programmable data planes
raise new opportunities

* lterative Query Refinement and Partitioning can
reduce pkt processing and count buckets by 4
and 5 orders of magnitude, respectively

19

Backup Slides

20

Feast or Famine Dichotomy

* Feast:
« Capture all traffic, e.g. pcap
* Detect all interesting network events
* Higher cost and slower detection

* Famine:
— Capture subset of traffic, e.g. Netflow, SNMP etfc.
— Not useful for many monitoring applications

Current Trend:
“Capture all the packets, all the time”

21

Refinement Plan Search

I

() l

I

I
! 1>
sampling rate 2% >33 1 O
-0 Y, () () suuss | ()
00D Lo
N 'l : c
1 if refinement Packet processed | g
fromlevelito] 78R4 2R\ 1O
(@O Or—-0Q | £
e

Learn {x} and r that minimize a linear

combination of cost metrics
() Count buckets

Run-time
Partltlonlng (offload to

/
victims, (t+1) = ,/ data plane)
pktStream. w1ndaw(W) transform { wndPkts =»>

.fllter‘p => P proto == 17)

sample(r) <--- Refinement
.map((dIP) => (dIP/16))

.map(p => (p.dIP, p.sIP)).distinct

.map((dIP, sIP) => (dIP, 1))

.reduceByKey(sum)

.filter((dIP, count) => count > T)

.map((dIP, count) => dIP)

23

SONATA Architecture

icati Query Output
Appllcatlong Q. Q, h==s{ Q e — = .
Interface : I
: |
I
- I
Refinement Training Data '
Run-time : oo T mmmm |
Partition

Data Plane Data Processing
Configurations Pipeline
O / L Stream Processor
> > re =
]

Programmable Data Pane

24

