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Big (“Internet”) Data

2-day graph Source: DE-CIX statistics
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Network Monitoring as
Streaming Analytics Problem
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Is using state-of-art stream processor good
enough solution?




Is it Good Enough?

« Use Case:
— Reflection Attack Monitoring Query

Detect hosts for which # of unique source IPs
sending UDP response messages exceeds threshold



Is it Good Enough?

« Use Case:
— Reflection Attack Monitoring Query

Detect hosts for which # of unique source IPs
sending UDP response messages exceeds threshold
victimIPs =
pktStream.window(W).transform { wndPkts =>
wndPkts.filter(p => p.proto == 17)
.map(p => (p.dIP, p.sIP)).distinct
.map((dIP, sIP) => (dIP, 1))
.reduceByKey(sum)
.filter((dIP, count) => count > T)
.map((dIP, count) => dIP)



Is it Good Enough?

« Use Case:
— Reflection Attack Monitoring Query

Detect hosts for which # of unique source IPs
sending UDP response messages exceeds threshold

— Use two hour IPFIX data trace from a large IXP

* Prohibitively Costly:

— Packet Processing Cost: requires processing 220 M
packets per second

How can we bring down these costs?



Idea 1: Iterative Query Refinement

 Observation:

Small fraction of traffic satisfies monitoring queries, e.g.
only 1 % of the traffic satisfies reflection attack query

* How it works:
— Augment operator’s query to observe at coarser level
— lteratively zoom-in to filter out uninteresting traffic

 Trade-off:

— Reduces count bucket cost
— Introduces additional detection delay cost



Iterative Query Refinement
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lterative Refinement in Action
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lterative Refinement in Action
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lterative Refinement in Action
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lterative Refinement in Action
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Idea 2: Query Partitioning

* Observation:
Data Plane can process packets at line rate

 How it works:

Delegate query processing operations that can be
executed in the data plane, e.q. filtering, sampling

 Trade-off:

— Reduces both the pkt processing & count bucket cost
— Introduces additional state in the data plane
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Query Partitioning

lterative Refinement
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Performance Improvements

Reflection Attack Monitoring (dIP/16 - dIP/32)

Rate (pps) | # Buckets

Stream Processor Only 220 M 1.16 B

lterative Refinement Only 220 M 12 K

lterative Refinement +

Query Partitioning 5-4K 12K

Trades pkt processing & count bucket cost

for additional detection delay
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Network Monitoring Applications

» Reflection Attack Monitoring (Security)

Detect hosts for which # of unique sIPs sending UDP
response messages exceeds thresh

 Distributed Port Scan Detection (Security)
— Detect hosts for which # of unique dIP exceeds thresh

— Detect hosts for which # of unique dPorts exceeds
thresh

 Distributed Jitter Monitoring (QoE)
Detect user groups for which RTT exceeds thresh
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Future Directions

* Query Language
How to dynamically map high-level abstractions to
packet tuples?

* lterative Refinement

How to automate generation of optimal refinement plans
for a query?

* Query Partitioning

How to execute more complex streaming operations like
map, reduce, join etc. in the data plane?
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Summary

* Big (“Internet”) Data motivates modulating
network monitoring as a streaming analytics
problem

Using state-of-art stream processors is not enough

« Stream processors + programmable data planes
raise new opportunities

* lterative Query Refinement and Partitioning can
reduce pkt processing and count buckets by 4
and 5 orders of magnitude, respectively
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Backup Slides
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Feast or Famine Dichotomy

* Feast:
« Capture all traffic, e.g. pcap
* Detect all interesting network events
* Higher cost and slower detection

* Famine:
— Capture subset of traffic, e.g. Netflow, SNMP etfc.
— Not useful for many monitoring applications

Current Trend:
“Capture all the packets, all the time”
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Refinement Plan Search
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Run-time
Partltlonlng (offload to

/
victims, (t+1) = ,/ data plane)
pktStream. w1ndaw(W) transform { wndPkts =»>

.fllter‘p => P proto == 17)

sample(r) <--- Refinement
.map((dIP) => (dIP/16))

.map(p => (p.dIP, p.sIP)).distinct

.map((dIP, sIP) => (dIP, 1))

.reduceByKey(sum)

.filter((dIP, count) => count > T)

.map((dIP, count) => dIP)
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SONATA Architecture
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